TRIMETHYLSILYLCYANATION OF HETEROAROMATIC KETONES IN THE CsF/18-CROWN-6/BENZENE PHASE-TRANSFER CATALYTIC SYSTEM

E. Abele, R. Abele, I. Mazheika, and E. Lukevics

The trimethylsilylcyanation of heteroaromatic ketones in the Me₃SiCN/CsF/18-crown-6/benzene phasetransfer catalytic system has been studied. The reaction products have been isolated selectively in yields of up to 95%.

Cyanohydrins are widely used as intermediates in organic synthesis [1]. One of the most widely used methods for the synthesis of these compounds is the addition of trimethylcyanosilane to aldehydes and ketones. The catalysts commonly used in this reaction are ZnCb, KCN/18-crown-6 [2], AgCN [3], montmorillonites [4, 5], HgI₂ [6], AlCl₃ [7], trimethylsilylbis(fluorosulfonyl)imide [8], dialkyldichlorostannanes [9], and Bu₃SnCN [10].

It has recently been shown that it is possible to enantioselectively trimethylsilylcyanate carbonyl compounds in the presence of the chiral complexes salen-Ti(IV) [11-15], dialkyl tartrate-Ti(IV) [16], binaphthol-Ti(IV) [17], Pybox-AlCl₃ [18], diethyl tartrate-Bi(III) [19], bisoxazoline-Mg(II) [20], and phosphineoxide-SmCl₃ [21], and also 1,3-bis(2-methylferrocenyl)propan-1,3-dione [22] and lanthanide alkoxides [23]. The addition of trimethylcyanosilane to aldehydes in acetonitrile in the absence of a catalyst is also known [24]. However prolonged boiling of the reaction mixture is normally required in this case. The reaction of ketones with trimethylcyanosilane in effect does not occur in the absence of a catalyst [24].

We have developed a new, mild, and selective phase-transfer catalytic method for the trimethylsilylcyanation of heteroaromatic ketones, including sterically hindered examples.

Compounds I-XIII readily react with trimethylcyanosilane at room temperature in a medium of low polarity (benzene) in the presence of catalytic amounts of CsF (20 mol.%) and 18-crown-6 (10 mol.%). The high effectiveness of slightly polar media (benzene or dichloromethane) in phase-transfer catalysis systems with CsF/18-crown-6 has been observed in the hydrosilylation of ketones [25].

I, XIV R¹ = Ph, R = Me; II, XV R¹ = Ph, R = CHMe₂; III, XVI R¹ = Ph, R = CHEt₂; IV, XVII R¹ = 2-furyl, R = Me; V, XVIII R¹ = 2-furyl, R = C(CH₂CH=CH₂)₃; VI, XIX R¹ = 2-thienyl, R = Me; VII, XX R¹ = 2-thienyl, R = CHMe₂; VIII, XXI R¹ = 2-pyridyl, R = Me; IX, XXII R¹ = 2-pyridyl, R = Ph; X, XXIII R¹ = 3-pyridyl, R = Me; XI, XXIV R¹ = 3-pyridyl, R = Ph; XII, XXV R¹ = 4-pyridyl, R = Me; XIII, XXVI R¹ = 4-pyridyl, R = Ph

0009-3122/99/3508-0943\$22.00©1999 KluwerAcademic/Plenum Publishers

Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia; e-mail: abele@osi.lanet.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1073-1076, August 1999. Original article submitted February 8, 1999.

R	R	Reaction time, h	Reaction product	Yield, %	Ref.
Ph	Me	5	XIV	67	[26]
Ph	CHMe	4	xv	79	[-•]
Ph	CHEt ₂	5	XVI	83	
2-Furyl	Me	5	XVII	74	
2-Furyl	C(CH ₂ CH=CH ₂) ₃	5	XVIII	88	
2-Thienyl	Me	6	XIX	71	[27]
2-Thienyl	CHMe ₂	4	xx	89	
2-Pyridyl	Me	3	XXI	95	[28]
2-Pyridyl	Ph	3	XXII	92	
3-Pyridyl	Me	3	xxiii	91	
3-Pyridyl	Ph	4	XXIV	89	
4-Pyridyl	Me	3	XXV	82	
4-Pyridyl	Ph	4	XXVI	85	

TABLE 1. Trimethylsilylcyanation of Heteroaromatic Ketones I-XIIICatalyzed by CsF/18-Crown-6 in Benzene at Room Temperature

The trimethylsilylcyanation products XIV-XXVI were isolated in 67-95% yields (Table 1). All the synthesized products were identified by ¹H NMR and mass spectroscopy (Tables 2 and 3).

Thus the phase-transfer catalysis method we have developed for the trimethylsilylcyanation of hetarylketones is mild, selective, and successful; reaction products were isolated in yields of up to 95%.

TABLE 2.	'H NMR	Spectral	Data	for Products	XIV-XXVI

Com- pound	Chemical shift, ppm, and coupling constants (J), Hz
XIV	0.16 (9H, s. SiMe ₃); 2.52 (3H, s, CH ₃); 7.33 and 7.82 (5H, m and m, Ph)
xv	0.16 (9H, s, SiMe ₃): 1.16 (6H, d, J = 7,0 Hz, CH ₃): 3.49 (1H, m, CH) 7.42 and 7.91 (5H, m and m, Ph)
XVI	0.16 (9H, s, SiMe ₃); 0.96 (6H, m, CH(CH ₂ CH ₃) ₂); 1.38 (4H, m, CH(CH ₂ CH ₃) ₂) 3.69 (1H, m, CH); 7.40 (5H, m, Ph)
XVII	0.13 (9H, s, SiMe ₃); 2.52 (3H, s, CH ₃); 6.58 (1H, m, 4-H); 7.25 (1H, m, 3-H) 7.65 (1H, m, 5-H)
XVIII	0.18 (9H, s. SiMe ₃); 2.40 (6H, m, C <u>H</u> -CH=CH ₂); 4.88 (6H, m, CH ₂ CH=C <u>H₂</u>) 5.89 (3H, m, CH ₂ C <u>H</u> =CH ₂): 6.47 (1H, m, 4-H); 6.64 (1H, m, 3-H): 7.53 (1H, m, 5-H)
XIX	0.16 (9H, s, SiMe ₃); 2.49 (3H, s, CH ₃); 7.06 (1H, m, 4-H); 7.62 (2H, m, 3-H and 5-H)
XX	0.13 (9H, s, SiMe ₃); 1.56 (6H, d, $J = 6.8$ Hz, CH ₃); 2.10 (hept, 1H, $J = 6.8$ Hz, CH) 6.91 (1H, m, 4-H); 7.16 (1H, m, 3-H); 7.25 (1H, m, 5-H)
XXI	0.22 (9H, s, SiMe ₃); 1.84 (3H, s, CH ₃); 7.15 (1H, m, 5-H) 7.47-7.66 (2H, m, 3-H and 4-H); 8.58 (1H, m, 6-H)
XXII	0.16 (9H, s, SiMe ₁); 7.20 (1H, m, 5-H); 7.42-7.55 (2H, m, 3-H and 4-H) 8.49 (1H, m, 6-H)
XXIII	0.18 (9H, s, SiMe ₃): 1.80 (3H, s, CH ₃); 7.27 (1H, m, 5-H); 7.76 (1H, m, 4-H) 8.49 (1H, m, 6-H): 8.71 (1H, m, 2-H)
XXIV	0.17 (9H, s, SiMe ₅): 7.28 (6H, m, Ph and 5-H): 7.67 (1H, m, 4-H); 8.53 (1H, m, 6-H) 8.68 (1H, m, 2-H)
XXV	0.22 (9H, s, SiMe ₃); 1.78 (3H, s, CH ₃); 7.42 (2H, m, 3-H and 5-H) 8.62 (2H, m, 2-H and 6-H)
xxvi	0.18 (9H, s, SiMe3); 7.36 (7H, m, Ph, 3-H and 5-H); 8.86 (2H, m, 4-H and 6-H)

TABLE 3. Mass Spectral Data for Products XIV-X	X٧	Л
--	----	---

Com- pound	<i>m/z</i> (<i>I</i> _{rcl} , %)
XIV	219 (<1, M ⁺), 204 (70), 177 (95), 135 (32), 105 (79), 75 (100), 51 (14), 45 (25)
XV	247 (1, M ⁺), 205 (15), 204 (24), 105 (100), 77 (14), 73 (12), 45 (8)
XVI	275 (1, M ⁺). 233 (4), 205 (56), 178 (18), 163 (10), 116 (9), 105 (100), 91 (9), 73 (26) 43 (17)
XVII	209 (3, M ⁺), 194 (58), 167 (30), 120 (24), 95 (54), 76 (100), 65 (20), 59 (9), 45 (23) 39 (17)
XVIII	329 (1, M ⁺), 195 (55), 194 (35), 168 (15), 135 (15), 107 (12), 95 (100), 79 (24), 73 (45) 41 (30)
XIX	225 (5, M ⁺), 210 (47), 183 (16), 136 (17), 111 (80), 84 (10), 75 (100), 45 (29)
XX	253 (1, M ⁺), 211 (75), 184 (75), 153 (6), 141 (7), 111 (100), 73 (24), 57 (19), 45 (16)
XXI	220 (2, M ⁺), 205 (100), 190 (20), 178 (64), 104 (12), 78 (23), 52 (7), 45 (17)
XXII	282 (75, M ⁺), 267 (52), 240 (23), 192 (55), 182 (9), 167 (10), 155 (37), 105 (100) 77 (30), 75 (35), 45 (23)
XXIII	220 (2, M ⁺), 205 (66), 178 (100), 136 (22), 106 (41), 84 (15), 75 (75), 51 (17), 45 (25)
XXIV	282 (10, M [*]), 267 (100), 204 (9), 193 (45), 192 (36), 166 (16), 139 (9), 105 (36), 84 (12) 73 (19), 45 (17)
XXV	220 (1, M ⁺), 205 (37), 178 (100), 136 (7), 106 (13), 84 (15), 75 (25), 51 (13), 45 (16)
XXVI	282 (2. M ⁺), 267 (100), 204 (15), 192 (25), 166 (9), 139 (13), 105 (44), 84 (18), 73 (13) 45 (13)

EXPERIMENTAL

¹H NMR spectra were recorded on a Bruker WH-90/DS spectrometer in CDCl₃ solution with TMS as internal standard. Mass spectra were recorded with a chromato-mass spectrometer GC-MS HP 6890 (70 eV). GLC analysis was carried out with a Chrom-5 chromatograph with flame ionization detector and a glass column filled with 5% OV-101 on W-HP chromosorb (80-100 mesh) and an analysis temperature of 170-230°C. Ketones I, II, IV, VI, VIII–XIII (Aldrich) were used without additional purification. 1-Phenyl-2-ethylbutanone (III), 1-(2-furyl-2,2,2-triallylethanone (V), and 2-methyl-(2-thienyl)-1-propanone (VII) were prepared from acetophenone, 2-acetylfuran, and 2-acetylthiophene by phase-transfer catalytic alkylation as previously described [29]. CsF was dried at 250°C for 1 h before use. Elemental analysis was impossible because of the instability of compounds XIV–XXVI.

General Method for the Trimethylsilylcyanation of Hetarylketones I-XIII. 1-(2-Furyl)-1trimethylsiloxy-cyanoethane (XVII). To a solution of 2-acetylfuran IV (0.22 g, 2 mmol) and 18-crown-6 (0.052 g, 0.2 mmol) in dry benzene (2.5 ml), CsF (0.0602 g, 0.4 mmol) was added followed by trimethylcyanosilane (0.266 ml, 2 mmol) under argon. The mixture was stirred for 5 h, filtered through AbO₃, and the solvent was evaporated from the filtrate to give compound XVII as a yellowish oil. Yield 0.31 g (74%).

Compounds XIV-XVI and XVIII-XXVI were prepared analogously. The characteristics of products XIV-XXVI are given in Tables 1-3.

The authors express their thanks to the Latvian Science Council for financial support (grant No. 707).

REFERENCES

- 1. M. North, *Synlett*, No. 11, 807 (1993).
- 2. G. L. Grunewald, W. J. Brouillete, and J. A. Finley, Tetrahedron Lett., 21, 1219 (1980).
- 3. French Pat. 2321497 (D. Boutte and A. Auroux); *Chem. Abs.*, **88**, 37453 (1978).
- 4. N. Onaka, K. Higuchi, K. Sugita, and Y. Izumi, Chem. Lett., No. 8, 1393 (1989).
- 5. R. Somanathan, I. A. Rivero, A. Gama, A. Ochoa, and G. Aguirre, Synth. Commun., 28, 2043 (1998).

- 6. P. R. Ortiz de Montellano and W. A. Vinson, J. Am. Chem. Soc., 101, 2222 (1979).
- 7. W. Lidy and W. Sundermeyer, Chem. Ber., 106, 587 (1973).
- 8. H. Kaur, G. Kaur, and S. Trehan, Synth. Commun., 26, 1925 (1996).
- 9. J. K. Whitesell and R. Apoidaca, Tetrahedron Lett., 37, 2525 (1996).
- 10. A. V. Kazantsev, A. D. Averin, N. V. Lukashev, and I. P. Beletskaya, Zh. Org. Khim., 34, 1495 (1998).
- 11. Y. Belokon, N. Ikonnikov, M. Moskalenko, M. North, S. Orlova, V. Tarasov, and L. Yashkina, *Tetrahedron: Asymm.*, 7, 851 (1966).
- 12. Y. Belokon, M. Moskalenko, N. Ikonnikov, L. Yashkina, D. Antonov, E. Vorontsov, and V. Rozenberg, *Tetrahedron: Asymm.*, **8**, 3245 (1997).
- 13. V. I. Tarasov, D. E. Hibbs, M. B. Hursthouse, N. S. Ikonnikov, K. M. Abdul Malik, M. North, C. Orizu, and Y. N. Belokon, *Chem. Commun.*, No. 3, 387 (1998).
- 14. W. Pan, X. Feng, L. Gong, W. Hu, Z. Li, A. Mi, and Y. Jiang, Synlett., No. 4, 337 (1996).
- 15. Y. Jiang, L. Gong, X. Feng, W. Hu, W. Pan, Z. Li, and A. Mi, Tetrahedron, 53, 14327 (1997).
- 16. M. Hayashi, T. Matsuda, and N. Oguni, J. Chem. Soc., Perkin Trans. I, No. 22, 3135 (1992).
- 17. M. Mori, H. Imma, and T. Nakai, *Tetrahedron Lett.*, 38, 6229 (1997).
- 18. I. Iovel, J. Popelis, M. Fleisher, E. Lukevics, Tetrahedron: Asymm., 8, 1279 (1997).
- 19. M. Wada, T. Takahashi, T. Domae, T. Fukuma, N. Miyoshi, and K. Smith, *Tetrahedron: Asymm.*, **8**, 3939 (1997).
- 20. E. J. Corey and Z. Wang, Tetrahedron Lett., 34, 4001 (1993).
- 21. W.-B. Yang and J.-M. Fang, J. Org. Chem., 63, 1356 (1998).
- 22. A. Abiko and G. Wang, Tetrahedron, 54, 11405 (1998).
- 23. C. Qian, C. Zhu, and T. Huang, J. Chem. Soc. Perkin Trans I, No. 14, 2131 (1998).
- 24. K. Manju and S. Trehan, J. Chem. Soc. Perkin Trans I, No. 19, 2383 (1995).
- 25. Yu. Goldberg, E. Abele, M. Shymanska, and E. Lukevics, J. Organomet. Chem., 410, 127 (1991).
- 26. B. M. Choudary, M. Narendar, and V. Bhuma, Synth. Commun., 25, 2829 (1995).
- 27. T. Sakai, K. Kiyata, S. Tsuboi, A. Takeda, M. Utaka, and S. Torii, Bull. Chem. Soc. Jpn., 62, 3537 (1989).
- U.S. Pat. 5350696 (R. A. Snow, D. J. Delecki, C. R. Shah, and K. R. Hollister); Chem. Abs., 121, 300766 (1994).
- 29. E. Abele, Yu. Sh. Gol'dberg, Yu. Yu. Popelis, and M. V. Shimanskaya, *Zh. Org. Khim.*, **26**, No. 8, 1784 (1990).